Research purpose

• Build a model that can properly learn the spatial-temporal dynamicity of transportation network data
• Find out which kind of weight is appropriate to improve the accuracy of short term traffic prediction on transportation network
• Build a graph neural network that can consider multiple kinds of weights at the same time
 • Thus learning full characteristics of a network

• The proposed network will have ability to accurately predict the short-term traffic.
• Also, the network will have scalability on attaching and detaching multiple weight on graph structure.
 • With more data, more accurate prediction will be achieved with only little change in parameters
Weight consideration

- **In/out flow**
 - Inflow and outflow weights are treated as separate weighted adjacency matrices

- **Speed limit**
 - **RATIO**
 - Speed limit is a critical factor on choice of path for drivers
 - If all other factors are the same, drivers would prefer to drive on the traffic links with higher speed limit
 - \[\frac{\text{limit}_{\text{next}}}{\text{limit}_{\text{current}}} \]
 - \[W_{ij} = \frac{\text{limit}_{j}}{\text{limit}_{i}} \]

- **CATEGORY**
 - Larger weight to the roads with higher speed limit
 - \[w^{sl_c}_{ij} = \text{speed limit of link } j \]

- **CHANGE**
 - Weights on the edges where speed limit changes
 - \[w^{sl_{ch}}_{ij} = 1 \text{ if speed limit of link } i \neq \text{ speed limit of link } j \]
Weight consideration & Traffic forecasting problem

- **Distance**
 - Two distance measures are used
 1. Distance between two traffic links
 - \(w_{ij} = \exp\left(-\frac{d_{ij}^2}{\sigma_{dist}^2}\right), i \neq j \) & \(A_{ij} > 0 \)

- **Angle**
 - Drivers would prefer to choose the traffic link on straight direction
 - \(\theta^{ij} = |\pi - \theta_0^{ij}| \)
 - \(W_{ij} = \exp\left(-\frac{1}{\theta^{ij}}\right) \)

- The number of weighted adjacency matrices will be
 - \textit{number of weight consideration} * 2\textit{(in/outflow)} * \textit{number of considered ranks}

- **Traffic Forecasting Problem**
 - Given historical observation of traffic speed of \(h \) time steps from time \(t \) \{\(x_{t-h+1}, ..., x_t \)\}, the goal is to predict the speed after \(p \) time steps.
Proposed model

\[\Theta = \{ \theta_{w_{h1}}, \ldots, \theta_{w_{h2}}, \ldots, \theta_{w_{p1}}, \ldots, \theta_{w_{p2}}, \ldots, \theta_{w_{k1}}, \ldots, \theta_{w_{k2}} \} \in \mathbb{R}^{c_{h1} \times c_{h2} \times \ldots \times c_{p1} \times \ldots \times c_{p2} \times \ldots \times c_{k1} \times \ldots \times c_{k2}} \]

- \(c_{h1} \): number of input channel (1 at default)

Graph Convolution Operations

- Weighted adjacency matrices, \(W \in \mathbb{R}^{N \times N} \)

- \(f \): (road-wise) fully connected operation

- Dim. reduc. conv: Dimension reduction convolution

- Output from rank 1, Output from rank 2, Output from rank k

Temporal modeling
- LSTM

Input \(i \in \mathbb{R}^n \) at time \(t - h, h \in \{0, \ldots, tp - 1\} \)
- \(tp \): the number of time step used for prediction
- \(N \): the number of traffic links
Graph Convolution Operation – Traffic Graph Convolution (Cui et al. 2018)

\[\tilde{A}^k \odot \theta_{W_i} X_t \in R^{N_{links}} \]
- \(A^k \): K-th rank weighted adjacency matrix
- \(\theta_{W_i} \): weight parameter for each weighted adjacency matrix
- \(X_t \): input at time t
- \(\odot \): Hadamard product (element-wise product)

\[W_i \in R^{N_{links} \times N_{links}} \]: weighted adjacency matrix (one for each weight consideration of each rank)

\[X_t \in R^{N_{links} \times cin} \]: input at time t

\[\theta_{W_i} \in R^{N_{links} \times N_{links}} \]: weight parameter for each weighted adjacency matrix

\[\odot \]: Hadamard product (element-wise product)
Data & Study Areas

• 5 min average taxi speed dataset on traffic links of Seoul is used
 • Acquired from topis.seoul.go.kr
 • Date: 2018.04 (1 month)

• Two targeted study area is chosen for testing
 1. Urban-Core (304 links)
 • To test the model performance on homogenous link area
 • Links from one of the most congested area of Seoul
 • The length of links is rather homogeneous
 • All the links have speed limit of 60

 2. Expanded-Mix (1007 links)
 • To test the model performance on rather heterogeneous link area
 • The area is located around the Han-river (CheonHo Bridge ~ DongJak Bridge)
 • The area includes the urban highway, bridges, urban roads, and rather small roads.
Results

Urban-Core

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>MAPE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>5.145 / 5.528 / 5.828</td>
<td>13.831 / 15.336 / 16.483</td>
<td>3.467 / 3.792 / 4.038</td>
</tr>
</tbody>
</table>

Urban-Mix

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>MAPE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR</td>
<td>5.841 / 6.542 / 7.049</td>
<td>13.690 / 15.229 / 16.490</td>
<td>3.520 / 3.918 / 4.252</td>
</tr>
<tr>
<td>MW-TGC</td>
<td>3.889 / 4.023 / 3.962</td>
<td>10.358 / 10.653 / 10.500</td>
<td>2.574 / 2.647 / 2.607</td>
</tr>
</tbody>
</table>

RMSE on each link for Urban-Mix dataset. (MW-TGC vs. ST-GCN)

\[\text{# links s.t. } \text{RMSE}_i > \mu_{\text{RMSE}} + \sigma_{\text{RMSE}} \]

Urban-Core

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>MAPE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>5.145 / 5.528 / 5.828</td>
<td>13.831 / 15.336 / 16.483</td>
<td>3.467 / 3.792 / 4.038</td>
</tr>
</tbody>
</table>

RMSE on each link for Urban-Mix dataset. (MW-TGC vs. ST-GCN)

\[\text{# links s.t. } \text{RMSE}_i > \mu_{\text{RMSE}} + \sigma_{\text{RMSE}} \]
Conclusion

- Proposed a way to feed multiple types of weights, or information, into a single graph convolutional networks model.
- The difference exist in the performance gain between two datasets
 - Feeding more information reduces unpredictability of roads with minor characteristics in heterogeneous network environment
 - Imply that with more information, MW-TGCN can achieve even better performance